Solvent-Controlled Asymmetric Strecker Reaction: Stereoselective Synthesis of r**-Trifluoromethylated** r**-Amino Acids**

Hua Wang, Xiaoming Zhao, Youhua Li, and Long Lu*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, PRC

lulong@mail.sioc.ac.cn

Received January 15, 2006

ABSTRACT

Stereoselective approaches to α-trifluoromethylated α-amino acids (α-Tfm AAs) have been developed. The stereoconfigurations of the resulting r**-Tfm AA precursors were well controlled by using different solvents. The optically active (S)-2-amino-2-phenyl-1,1,1-trifluoropropanoic acid was synthesized by this method.**

 α -Trifluoromethylated (CF₃) α -amino acids (α -Tfm AAs) have been attracting much attention in the field of biochemistry and pharmacology because of their unique properties.¹ Several synthetic approaches of α -Tfm AAs have been developed; however they have suffered from some drawbacks such as, for instance, poor stereocontrol in the formation of the stereogenic quaternary center.² Consequently, stereoselective construction of the stereogenic quaternary center under mild conditions is a desirable method.

Chiral sulfinyl amide, which could coordinate with a Lewis acid as an electronic donor and direct the stereoselectivity

10.1021/ol0601186 CCC: \$33.50 © 2006 American Chemical Society **Published on Web 03/04/2006**

of the products, is an efficient auxiliary group.3 The use of *N*-*tert*-butylsulfinylimines as chiral templates is thoroughly described in the diastereoselective synthesis of trifluoromethylated derivatives.4 However, there is no example concerning the nature of the sulfoxide group as a Lewis base that activates the Lewis acid.⁵ Herein, we wish to report an example of the asymmetric Strecker reaction based on the principles of trimethylsilyl cyanide (TMSCN), a readily available reagent activated by the sulfoxide group in the absence of a catalyst.

ORGANIC LETTERS

2006 Vol. 8, No. 7 ¹³⁷⁹-**¹³⁸¹**

Our research work began with the synthesis of the chiral CF3-substituted (*R*)-*N*-*tert*-butylsulfinylketoimines (Tfm-NB-SKIs, **1**) (derived from (*R*)-*tert*-butylsulfin amide).6 The (1) (a) Banks, R. E.; Tatlow, J. C.; Smart, B. E. *Organofluorine*

Chemistry: Principles and Commercial Applications; Plenum Press: New York, 1994. (b) Sewald, N.; Burger, K. *Fluorine-containing Amino Acids: Synthesis and Properties*; Wiley: Chichester, 1995.

^{(2) (}a) Asensio, A.; Bravo, P.; Crucianelli, M.; Farina, A.; Fustero, S.; Soler, G. J.; Meille, V. S.; Panzeri, W.; Viani, F.; Volonterio, A.; Zanda, M. *Eur. J. Org. Chem.* **²⁰⁰¹**, 1449-1458. (b) Fustereo, S.; Navorro, A.; Pina, B.; Soler, G. J.; Bartolome, A.; Asensio, A.; Simon, A.; Bravo, P.; Fronza, G.; Volonterio, A.; Zanda, M. *Org. Lett.* **²⁰⁰¹**, *³*, 2621-2624. (c) Crucianelli, M.; Bravo, P.; Arnone, A.; Corradi, E.; Meille, V. S.; Zanda, M. *J. Org. Chem.* **²⁰⁰⁰**, *⁶⁵*, 2965-2971. (d) Amii, H.; Kishikawa, Y.; Kageyama, K.; Uneyama, K. *J. Org. Chem.* **²⁰⁰⁰**, *⁶⁵*, 3404-3408. (e) Abe, H.; Amii, H.; Uneyama, K. *Org. Lett.* **²⁰⁰¹**, *³*, 313-315. (f) Qiu, X.; Meng, W.; Qing, F. *Tetrahedron* **²⁰⁰⁴**, *⁶⁰*, 6711-6745. (g) Ogu, K.; Matsumoto, S.; Akazome, M.; ogura, K. *Org. Lett.* **²⁰⁰⁵**, *⁷*, 589-592. (h) Bravo, P.; Viani, F.; Zanda, M.; Soloshonok, V. *Gazz. Chim. Ital.* **1995**, *125*, ¹⁴⁹-150. (i) Bravo, P.; Capelli, S.; Meille, S. V.; Viani, F.; Zanda, M.; Kukhar, V. P.; Soloshonok, V. A. *Tetrahedron: Asymmetry* **¹⁹⁹⁴**, *⁵*, 2009- 2018.

⁽³⁾ For review, see: (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. *Acc. Chem. Res.* **²⁰⁰²**, *³⁵*, 984-995. (b) Davis, F. A.; Zhou, P.; Chen, B.-C. *Chem. Soc. Re*V*.* **¹⁹⁹⁸**, *²⁷*, 13-18. (c) Ferna´ndez, I.; Khiar, N. *Chem. Re*V*.* **²⁰⁰³**, *¹⁰³*, 3651-3706.

^{(4) (}a) Prakash, J. K. S.; Mandal, M.; Olah, G. A. *Angew. Chem., Int. Ed.* **²⁰⁰¹**, *⁴⁰*, 589-590. (b) Prakash, J. K. S.; Mandal, M. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 6538-6539. (c) Xu, W.; Dolbier, W. R., Jr. *J. Org. Chem.* **²⁰⁰⁵**, *⁷⁰*, 4741-4745.

Interactions; Plenum: New York, 1978. (b) Jensen, W. B. The Lewis Acid-*Interactions*; Plenum: New York, 1978. (b) Jensen, W. B. *The Lewis Acid*-*Base Concepts*; Wiley: New York, 1980; pp 136–137. (c) Denmark, S.
E: Eu J *Chem Commun*, 2003, 2, 168–170. (d) Denmark, S. E: Eu J E.; Fu, J. *Chem. Commun.* **²⁰⁰³**, *²*, 168-170. (d) Denmark, S. E.; Fu, J. *Chem. Re*V*.* **²⁰⁰³**, *¹⁰³*, 2763-2793.

^{(6) (}a) Liu, G.; Cogan, D. A.; Ellman, J. A. *J. Am. Chem. Soc.* **1997**, *¹¹⁹*, 9913-9914. (b) Evans, J. W.; Ellman, J. A. *J. Org. Chem.* **²⁰⁰³**, *⁶⁸*, ⁹⁹⁴⁸-9957.

optimized reactions were performed in hexane distilled from Na/benzophenone in the presence of 1.5 equiv of Ti(O*ⁱ* Pr)4, where T fm-NBSKIs were obtained in $47-80\%$ yields (Table 1). It must be pointed out that Tfm-NBSKIs have to be

generated and isolated quickly prior to use because they are readily hydrolyzed upon prolonged standing on silica gel. **1** was not fully characterized because of the same reason.

With these compounds in hand, we investigated the Strecker reaction of **1e** with TMSCN in hexane at room temperature. A mixture of **2e** and **3e** was obtained in 91% yield and 99:1 dr (**2e**/**3e**) (Table 2, entry 1). Solvent effects

^a Diastereomeric ratios were determined by 19F NMR spectroscopy on the crude reaction mixture. ^{*b*} Total yields of two analytically pure isomers.

were investigated and summarized in Table 2. Polar solvents usually led to a decrease in the **2e**/**3e** ratio except for 1,4 dioxane, in which a decomposition of imine was observed. It is noteworthy that the reaction in DMF afforded **2e** and **3e** in a 1:6 ratio, which is a diastereoselectivity opposite to the reaction in hexane (Table 2, entry 6).

The Strecker reaction in hexane was successful with a variety of substrates, and the scope of the reaction was outlined in Table 3. **2a**-**^h** were obtained in 69-92% yields with good dr value. The addition of 0.2 equiv of Ti(O*ⁱ* Pr)4 accelerated the reaction; however, this resulted in a decrease of stereoselectivity, presumably because of the strong $Ti-O$ interaction that inhibits the activation of TMSCN by sulfoxide (Table 3). An X-ray diffraction study of both **2e** and **2a**⁷ indicated that the absolute configuration of **2** was (*S, Rs*). Therefore, we deduced the absolute configuration of **3** was (*R, Rs*).

To study this Strecker reaction in DMF, **1a**-**^h** were subjected to the optimized reaction conditions. All of them underwent the Strecker reaction in several hours at -35 °C and gave **²** and **³** in 69-89% yields with up to a 1:19 dr value (Table 3).

On the basis of the diastereoselectivity observed (Table 1), a possible mechanism was proposed. The Strecker reaction in hexane proceeds via the six-membered chairlike models⁸ (T^1 and T^2 , Scheme 1), and the chiral *tert*-

butylsulfinyl group directs the configuration of $T¹$ and $T²$. As mentioned before, the sulfinyl group in Tfm-NBSKI activates TMSCN to undergo the Strecker reaction. $T¹$ is unfavored because of the predominant electrostatic repulsion between the lone pairs on the sulfur and the electron-rich $CF₃$ group. The six-membered transition state in hexane gives **2** (*S*, *Rs*) as the major product. However, the Strecker reaction in DMF undertakes Fujisawa's model⁹ (T^3 and T^4 transition state) because DMF is not only a polar solvent but also a Lewis base, which activates TMSCN instead of the sulfinyl

⁽⁷⁾ See Supporting Information. Crystallographic data for X-ray structures have been deposited with the Cambridge Crystallographic Center [**2a** (CCDC 280989), **2e** (CCDC 280988)]. Copies of the data can be obtained free of charge from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, U.K.. E-mail: deposit@ccdc.cam.ac.uk.

⁽⁸⁾ Hose, D. R. J.; Mahon, M. F.; Molly, K.; Raynham, C.; Wills, T. M. *J. Chem. Soc., Perkin Trans. 1* **¹⁹⁹⁶**, 691-703.

⁽⁹⁾ Fujisawa, T.; Kooriyama, Y.; Shimizu, M. *Tetrahedron Lett.* **1996**, *³⁷*, 3881-3884.

Table 3. Asymmetric Strecker Reaction between Tfm-NBSKIs and TMSCN in Hexane and DMF

	O .√ ^{.S} ∽NH CN NH CN TMSCN $+$ `R F_3C R F_3C F_3C R. 1a-h 2a-h (S, Rs) $3a-h(R, Rs)$									
	substrate (R)			t(h)		total yield ^{e} (%)		$\text{d} r^{a,b}$ (2/3)		
entry			product ^c	hexane	DMF ^g	hexane	DMF	hexane	DMF	
Ŧ	1a	$(Me-)$	$2a^d$ 3a	24	8	69	71	27:1(4:1)	1:19	
$\overline{2}$	1 _b	$(Et-)$	2b.3b	24	8	77	76	7:1(3:1)	1:10	
3	1c	$(n-C_6H_1-)$	2c, 3c	48	8	88	84	14:1(2:1)	1:11	
4	1 _d	$(BnCH2-)$	2d, 3d	48	12	92	89	7:1(7:1)	1:15	
5	1e	$(Ph-)$	$2e^d$ 3e	24	12	85	72	99:1(7:1)	1:6	
6	1 _f	$(p-MePh-)$	2f, 3f	24	12	87	69	11:1(1:1)	1:7	
7	1 _g	$(p-MeOPh-)$	2g, 3g	12	12	89	78	14:1(4:1)	1:9	
8	1 _h	$(p$ -ClPh $-$)	2h, 3h	12	12	83	71	8:1(1:1)	1:6	

^a Diastereomeric ratios were determined by ¹⁹ F NMR spectroscopy of the crude reaction mixture. *^b* In parentheses are the dr values with 20 mol % of Ti(O*ⁱ* Pr)4 as catalyst. *^c* Configurations were assigned from the transition-state model. *^d* Configurations were determined by X-ray crystallographic data. *^e* Total yields of two analytically pure isomers. *^f* Hexane as the solvent at room temperature. *^g* DMF as solvent at -³⁵ °C.

group of Tfm-NBSKIs. T^3 is more favored than T^4 because of the electrostatic repulsion between CF_3 and the lone pairs of sulfur in T^4 . Hence, 3 (R, Rs) is obtained as the major product (Scheme 1).

It must be indicated that the sulfinimines without CF_3 cannot proceed in such reactions under similar conditions. The CF_3 group might play an important role: (1) electrostatic repulsion causes CF_3 to be far away from the lone pairs of the sulfur atoms; (2) the steric effect of CF_3 is approximately equivalent to isopropyl,¹⁰ and therefore an e bond is more stable than an *a* bond in six-membered chairlike models; (3) the electron-withdrawing nature of the CF_3 group increases the reactivity of sulfinimines, therefore facilitating the Strecker reaction.

To demonstrate further the synthetic utility of these findings, (*S*)-2-amino-2-phenyl-1,1,1-trifluoropropanoic acid (**4a**) was readily synthesized from **2e** (Scheme 2). The

deprotection and hydrolysis of **2e** in HCl (12 N) at refluxing temperature gave the desired optically active α -CF₃ α -amino acid in one pot. (*S*)-2-amino-2-methyl-1,1,1-trifluoropropanoic acid $(4b)^{2i}$ was synthesized from $2a$ in the same way.

In summary, an effective method for the formation of stereogenic quaternary centers via solvent-controlled asymmetric Strecker reactions was developed. The reaction in hexane afforded predominantly (*S*, *Rs*)-product, whereas in DMF, the (*R*, *Rs*)-isomer was the major product. Further deprotection and hydrolysis resulted in α -trifluoromethyl α -amino acid. This method provided a stereoselective approach to the optically active α -trifluoromethyl α -amino acids

Acknowledgment. We thank the National Natural Science Foundation of China (Grant Numbers 29825104 and 29632003) and the Chinese Academy of Science for financial support.

Supporting Information Available: Experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org

OL0601186

⁽¹⁰⁾ Riggi, I.; Virgili, A.; Moragas, de M.; Jaime, C. *J. Org. Chem.* **1995**, *⁶⁰*, 27-31.