Solvent-Controlled Asymmetric Strecker Reaction: Stereoselective Synthesis of α -Trifluoromethylated α -Amino Acids

Hua Wang, Xiaoming Zhao, Youhua Li, and Long Lu*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, PRC

lulong@mail.sioc.ac.cn

Received January 15, 2006

ABSTRACT

Stereoselective approaches to α -trifluoromethylated α -amino acids (α -Tfm AAs) have been developed. The stereoconfigurations of the resulting α -Tfm AA precursors were well controlled by using different solvents. The optically active (*S*)-2-amino-2-phenyl-1,1,1-trifluoropropanoic acid was synthesized by this method.

 α -Trifluoromethylated (CF₃) α -amino acids (α -Tfm AAs) have been attracting much attention in the field of biochemistry and pharmacology because of their unique properties.¹ Several synthetic approaches of α -Tfm AAs have been developed; however they have suffered from some drawbacks such as, for instance, poor stereocontrol in the formation of the stereogenic quaternary center.² Consequently, stereoselective construction of the stereogenic quaternary center under mild conditions is a desirable method.

Chiral sulfinyl amide, which could coordinate with a Lewis acid as an electronic donor and direct the stereoselectivity

10.1021/ol0601186 CCC: \$33.50 © 2006 American Chemical Society Published on Web 03/04/2006

of the products, is an efficient auxiliary group.³ The use of *N-tert*-butylsulfinylimines as chiral templates is thoroughly described in the diastereoselective synthesis of trifluoromethylated derivatives.⁴ However, there is no example concerning the nature of the sulfoxide group as a Lewis base that activates the Lewis acid.⁵ Herein, we wish to report an example of the asymmetric Strecker reaction based on the principles of trimethylsilyl cyanide (TMSCN), a readily available reagent activated by the sulfoxide group in the absence of a catalyst.

ORGANIC LETTERS

2006 Vol. 8, No. 7

1379-1381

Our research work began with the synthesis of the chiral CF₃-substituted (*R*)-*N*-*tert*-butylsulfinylketoimines (Tfm-NB-SKIs, **1**) (derived from (*R*)-*tert*-butylsulfin amide).⁶ The

^{(1) (}a) Banks, R. E.; Tatlow, J. C.; Smart, B. E. Organofluorine Chemistry: Principles and Commercial Applications; Plenum Press: New York, 1994. (b) Sewald, N.; Burger, K. Fluorine-containing Amino Acids: Synthesis and Properties; Wiley: Chichester, 1995.

^{(2) (}a) Asensio, A.; Bravo, P.; Crucianelli, M.; Farina, A.; Fustero, S.; Soler, G. J.; Meille, V. S.; Panzeri, W.; Viani, F.; Volonterio, A.; Zanda, M. *Eur. J. Org. Chem.* **2001**, 1449–1458. (b) Fustereo, S.; Navorro, A.; Pina, B.; Soler, G. J.; Bartolome, A.; Asensio, A.; Simon, A.; Bravo, P.; Fronza, G.; Volonterio, A.; Zanda, M. *Org. Lett.* **2001**, *3*, 2621–2624. (c) Crucianelli, M.; Bravo, P.; Arnone, A.; Corradi, E.; Meille, V. S.; Zanda, M. *J. Org. Chem.* **2000**, *65*, 2965–2971. (d) Amii, H.; Kishikawa, Y.; Kageyama, K.; Uneyama, K. *J. Org. Chem.* **2000**, *65*, 3404–3408. (e) Abe, H.; Amii, H.; Uneyama, K. *Org. Lett.* **2001**, *3*, 313–315. (f) Qiu, X.; Meng, W.; Qing, F. *Tetrahedron* **2004**, *60*, 6711–6745. (g) Ogu, K.; Matsumoto, S.; Akazome, M.; ogura, K. *Org. Lett.* **2005**, *7*, 589–592. (h) Bravo, P.; Viani, F.; Zanda, M.; Soloshonok, V. *Gazz. Chim. Ital.* **1995**, *125*, 149–150. (i) Bravo, P.; Capelli, S.; Meille, S. V.; Viani, F.; Zanda, M.; Kukhar, V. P.; Soloshonok, V. A. *Tetrahedron: Asymmetry* **1994**, *5*, 2009– 2018.

⁽³⁾ For review, see: (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984–995. (b) Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. Rev. 1998, 27, 13–18. (c) Fernández, I.; Khiar, N. Chem. Rev. 2003, 103, 3651–3706.

^{(4) (}a) Prakash, J. K. S.; Mandal, M.; Olah, G. A. Angew. Chem., Int. Ed. 2001, 40, 589–590. (b) Prakash, J. K. S.; Mandal, M. J. Am. Chem. Soc. 2002, 124, 6538–6539. (c) Xu, W.; Dolbier, W. R., Jr. J. Org. Chem. 2005, 70, 4741–4745.

^{(5) (}a) Gutmann, V. The Donor-Acceptor Approach to Molecular Interactions; Plenum: New York, 1978. (b) Jensen, W. B. The Lewis Acid-Base Concepts; Wiley: New York, 1980; pp 136–137. (c) Denmark, S. E.; Fu, J. Chem. Commun. 2003, 2, 168–170. (d) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763–2793.

^{(6) (}a) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. **1997**, 119, 9913–9914. (b) Evans, J. W.; Ellman, J. A. J. Org. Chem. **2003**, 68, 9948–9957.

optimized reactions were performed in hexane distilled from Na/benzophenone in the presence of 1.5 equiv of $Ti(O^{i}Pr)_{4}$, where Tfm-NBSKIs were obtained in 47–80% yields (Table 1). It must be pointed out that Tfm-NBSKIs have to be

Table 1. Preparation of the Tfm-NBSKIs $F_3C \xrightarrow{\bigcirc} R^+ H_2N \xrightarrow{\bigcirc} \frac{Ti(Oi-Pr)_4, 1.5 \text{ equiv.}}{hexane, rt} \xrightarrow{\bigvee} F_3C \xrightarrow{\bigcirc} R^+$									
entry	R	product	<i>t</i> (h)	yield ^a (%)					
1	Me-	1a	3	47					
2	Et-	1b	3	61					
3	$n - C_6 H_{13} -$	1c	12	81					
4	$BnCH_2-$	1d	4	56					
-1				50					
5	Ph-	1e	4	58					
	$_{p-MePh-}$	1e 1f	$\frac{4}{12}$	58 50					
5			-						

generated and isolated quickly prior to use because they are readily hydrolyzed upon prolonged standing on silica gel. **1** was not fully characterized because of the same reason.

With these compounds in hand, we investigated the Strecker reaction of 1e with TMSCN in hexane at room temperature. A mixture of 2e and 3e was obtained in 91% yield and 99:1 dr (2e/3e) (Table 2, entry 1). Solvent effects

Table 2.Reaction	Effect of Solvents	s on the Asymmet	ric Strecker	
F ₃ C	+ TMSCN solven	$F_{3}C$	+ F ₃ C	
1e		2e (S, R _S)	3e (<i>R</i> , <i>R</i> _S)	
entry	solvent	$\mathrm{d}\mathbf{r}^a \left(\mathbf{2e}\!/\!\mathbf{3e}\right)$	total yield ^{b} (%)	
1	hexane	99:1	91	
2	$\rm Et_2O$	3:1	73	
3	EtOAc	1:1	70	
	-			
4	1,4-dioxane			
$\frac{4}{5}$	1,4-dioxane DMSO	1:3	33	

^a Diastereomeric ratios were determined by ¹⁹F NMR spectroscopy on the crude reaction mixture. ^b Total yields of two analytically pure isomers.

were investigated and summarized in Table 2. Polar solvents usually led to a decrease in the **2e/3e** ratio except for 1,4dioxane, in which a decomposition of imine was observed. It is noteworthy that the reaction in DMF afforded **2e** and **3e** in a 1:6 ratio, which is a diastereoselectivity opposite to the reaction in hexane (Table 2, entry 6). The Strecker reaction in hexane was successful with a variety of substrates, and the scope of the reaction was outlined in Table 3. **2a**-**h** were obtained in 69–92% yields with good dr value. The addition of 0.2 equiv of $Ti(O'Pr)_4$ accelerated the reaction; however, this resulted in a decrease of stereoselectivity, presumably because of the strong Ti-O interaction that inhibits the activation of TMSCN by sulfoxide (Table 3). An X-ray diffraction study of both **2e** and **2a**⁷ indicated that the absolute configuration of **2** was (*S*, *Rs*). Therefore, we deduced the absolute configuration of **3** was (*R*, *Rs*).

To study this Strecker reaction in DMF, 1a-h were subjected to the optimized reaction conditions. All of them underwent the Strecker reaction in several hours at -35 °C and gave 2 and 3 in 69–89% yields with up to a 1:19 dr value (Table 3).

On the basis of the diastereoselectivity observed (Table 1), a possible mechanism was proposed. The Strecker reaction in hexane proceeds via the six-membered chairlike models⁸ (T^{1} and T^{2} , Scheme 1), and the chiral *tert*-

butylsulfinyl group directs the configuration of T^{1} and T^{2} . As mentioned before, the sulfinyl group in Tfm-NBSKI activates TMSCN to undergo the Strecker reaction. T^{1} is unfavored because of the predominant electrostatic repulsion between the lone pairs on the sulfur and the electron-rich CF₃ group. The six-membered transition state in hexane gives **2** (*S*, *Rs*) as the major product. However, the Strecker reaction in DMF undertakes Fujisawa's model⁹ (T^{3} and T^{4} transition state) because DMF is not only a polar solvent but also a Lewis base, which activates TMSCN instead of the sulfinyl

⁽⁷⁾ See Supporting Information. Crystallographic data for X-ray structures have been deposited with the Cambridge Crystallographic Center [**2a** (CCDC 280989), **2e** (CCDC 280988)]. Copies of the data can be obtained free of charge from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, U.K.. E-mail: deposit@ccdc.cam.ac.uk.

⁽⁸⁾ Hose, D. R. J.; Mahon, M. F.; MoÎly, K.; Raynham, C.; Wills, T. M. J. Chem. Soc., Perkin Trans. 1 1996, 691–703.

⁽⁹⁾ Fujisawa, T.; Kooriyama, Y.; Shimizu, M. Tetrahedron Lett. 1996, 37, 3881–3884.

Table 3. Asymmetric Strecker Reaction between Tfm-NBSKIs and TMSCN in Hexane and DMF

	$F_{3}C$ R $+$ TMSCN \rightarrow $F_{3}C$ R $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$								
	1a-h		1a-h	2a-h (<i>S</i> , <i>Rs</i>)		$\begin{array}{c} \textbf{3a-h} \left(R, Rs \right) \\ \hline \\ \textbf{total yield}^{e} \left(\% \right) \end{array}$		$\mathrm{dr}^{a,b}\left(\mathbf{2/3} ight)$	
entry			$product^c$	hexane ^f	\mathbf{DMF}^{g}	hexane	DMF	hexane	DMF
1	1a	(Me-)	$\mathbf{2a},^{d}\mathbf{3a}$	24	8	69	71	27:1 (4:1)	1:19
2	1b	(Et-)	2b, 3b	24	8	77	76	7:1 (3:1)	1:10
3	1c	$(n-C_6H_1-)$	2c , 3c	48	8	88	84	14:1(2:1)	1:11
4	1d	$(BnCH_2-)$	2d, 3d	48	12	92	89	7:1 (7:1)	1:15
5	1e	(Ph-)	$\mathbf{2e}^{d}, \mathbf{3e}$	24	12	85	72	99:1 (7:1)	1:6
6	$\mathbf{1f}$	(p-MePh-)	2f, 3f	24	12	87	69	11:1 (1:1)	1:7
7	1g	(p-MeOPh-)	2g, 3g	12	12	89	78	14:1 (4:1)	1:9
8	1h	(p-ClPh-)	2h, 3h	12	12	83	71	8:1 (1:1)	1:6

^{*a*} Diastereomeric ratios were determined by ¹⁹ F NMR spectroscopy of the crude reaction mixture. ^{*b*} In parentheses are the dr values with 20 mol % of Ti(O^{2} Pr)₄ as catalyst. ^{*c*} Configurations were assigned from the transition-state model. ^{*d*} Configurations were determined by X-ray crystallographic data. ^{*e*} Total yields of two analytically pure isomers. ^{*f*} Hexane as the solvent at room temperature. ^{*g*} DMF as solvent at -35 °C.

group of Tfm-NBSKIs. T^3 is more favored than T^4 because of the electrostatic repulsion between CF₃ and the lone pairs of sulfur in T^4 . Hence, **3** (*R*, *Rs*) is obtained as the major product (Scheme 1).

It must be indicated that the sulfinimines without CF_3 cannot proceed in such reactions under similar conditions. The CF_3 group might play an important role: (1) electrostatic repulsion causes CF_3 to be far away from the lone pairs of the sulfur atoms; (2) the steric effect of CF_3 is approximately equivalent to isopropyl,¹⁰ and therefore an *e* bond is more stable than an *a* bond in six-membered chairlike models; (3) the electron-withdrawing nature of the CF_3 group increases the reactivity of sulfinimines, therefore facilitating the Strecker reaction.

To demonstrate further the synthetic utility of these findings, (S)-2-amino-2-phenyl-1,1,1-trifluoropropanoic acid (4a) was readily synthesized from 2e (Scheme 2). The

deprotection and hydrolysis of **2e** in HCl (12 N) at refluxing temperature gave the desired optically active α -CF₃ α -amino acid in one pot. (*S*)-2-amino-2-methyl-1,1,1-trifluoropropanoic acid (**4b**)²ⁱ was synthesized from **2a** in the same way.

In summary, an effective method for the formation of stereogenic quaternary centers via solvent-controlled asymmetric Strecker reactions was developed. The reaction in hexane afforded predominantly (*S*, *Rs*)-product, whereas in DMF, the (*R*, *Rs*)-isomer was the major product. Further deprotection and hydrolysis resulted in α -trifluoromethyl α -amino acid. This method provided a stereoselective approach to the optically active α -trifluoromethyl α -amino acids

Acknowledgment. We thank the National Natural Science Foundation of China (Grant Numbers 29825104 and 29632003) and the Chinese Academy of Science for financial support.

Supporting Information Available: Experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org

OL0601186

⁽¹⁰⁾ Riggi, I.; Virgili, A.; Moragas, de M.; Jaime, C. J. Org. Chem. 1995, 60, 27-31.